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History of proportional control in inventory management I

Deziel and Eilon (1967) is one of the earliest studies of the
proportional order-up-to (POUT) policy with discrete control theory.

The continuous time APIOBPCS (John et al., 1994) model was
developed based on the IOBPCS model (Towill, 1982).

For more recent and more through literature reviews, Lin et al. (2017)
and Ivanov et al. (2018).

The POUT policy is a discrete time APIOBPCS model when the
inventory feedback controller and the WIP feedback controller are
taking the same value.

POUT is able to alter the trade-off between inventory and capacity
costs, and is effective in reducing the bullwhip effect.
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History of proportional control in inventory management II

A steady stream of research on the POUT policy assumes stationary
demand. Less attention has been given to non-stationary demand.

Hosoda and Disney (2006) study the POUT policy’s reaction to
AR(1) demand in a three echelon supply chain.

Gaalman (2006) studies the full-state OUT policy with ARMA(p,q)
demand. The full-state policy has a proportional controller in both
the feedback and the feed-forward paths in the OUT policy.

Gaalman and Disney (2009) investigate both the POUT and the
full-state OUT policy under ARMA(2,2) demand

The POUT policy is used in i.i.d. demand, closed-loop setting by
Zhou et al. (2017) and Cannella et al. (2021).

Boute et al. (2022) considered non-stationary demand in dual
sourcing setting with local SpeedFactories.
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The ARIMA(1,1,2) demand process

Assume a firm faces an ARIMA(1,1,2) demand process,

dt = dt−1 + ϕ(dt−1 − dt−2)− θ1ηt−1 − θ2ηt−2 + ηt . (1)

Here,

ϕ is the auto-regressive parameter,

θi is the moving average parameter at lag i ,

ηt is a sequence of i.i.d. random variables, with zero mean and finite
variance V[η].

Variance of the ARIMA(1,1,2) demand, V[dt ]
Due to the pole at unity, the variance of an ARIMA(1,1,2) demand process
is infinite, Li et al. (2023).
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The damped trend forecasting mechanism

Gardner and McKenzie (1985) provide the following recurrence form of the
DT forecasting method:

ât = αdt + (1− α)
(
ât−1 + γb̂t−1

)
, (2)

b̂t = β (ât − ât−1) + (1− β)γb̂t−1, (3)

d̂t+k,t = ât + φ [k] b̂t . (4)

Here, d̂t+k,t is the forecast of the demand k periods ahead, dt+k , made at

time t. d̂t+k,t is the sum of a level, ât , and a trend, b̂t , component and

φ [k] =
k∑

i=1

γ i =
γ
(
1− γk

)
1− γ

. (5)

{α, β, γ} are the DT forecasting parameters.

α is a smoothing constant applied to the level ât .

β is a smoothing constant applied to the trend b̂t .

γ shapes the forecasts as they are projected into the future.
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γ plays a significant role in DT forecasts, Disney (2024)
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Equivalence of the damped trend and the ARIMA(1,1,2)
demand process

Gardner and McKenzie (1985) also show the damped trend forecast produces a
MMSE forecast of ARIMA(1,1,2) demand when

θ1 = 1 + γ − α− αβγ,

θ2 = γ(α− 1),

ϕ = γ.

 (6)

Given a set of ARIMA(1,1,2) parameters, perhaps identified from a real time
series, we can solve the simultaneous equations in (6) for the damped trend
parameters:

α = θ2+ϕ
ϕ ,

β = ϕ2−θ2−θ1ϕ
θ2ϕ+ϕ2 ,

γ = ϕ.

 (7)
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The ARIMA(1,1,2) eigenvalues

The eigenvalues of the ARIMA(1,1,2) demand process can be used to
make some bullwhip predictions. The eigenvalues can be identified from
the z-transform transfer function of the ARIMA(1,1,2) demand process,

DARIMA(1,1,2)(z)

ϵ(z)
=

z2 − zθ1 − θ2
z2 − z(1 + ϕ) + ϕ

. (8)

Eq. (8) has the following eigenvalues, Li et al. (2023):

λθ
1 =

1

2

(
θ1 −

√
θ21 + 4θ2

)
, λθ

2 =
1

2

(
θ1 +

√
θ21 + 4θ2

)
,

λϕ
1 =ϕ, and λϕ

2 = 1.

The moving average eigenvalues (λθ
1 and λθ

2) are also known as the system

zeros. The auto-regressive eigenvalues (λϕ
1 and λϕ

2 ) are also known as the
system poles.
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Possible eigenvalue orderings

The eigenvalues (poles and zeros) of the dynamic system completely
specify its linear dynamic response. The nature of the dynamic response is
determined by the ordering (sequence) of the poles and zeros.
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Panel a: All possible eigenvalue ordering for second order systems,
Gaalman et al. (2022).

Panel b: Possible eigenvalue orderings for ARIMA(1,1,2) demand.
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State space model of ARIMA(1,1,2) and its impulse
response

We construct (1) into the state space model

dt+1 = Ddt + Gηt , (9)

where

D =

(
1 + ϕ 1
−ϕ 0

)
, G =

(
1 + ϕ− θ1
−ϕ− θ2

)
=

(
1 + ϕ− (λθ

1 + λθ
2)

−ϕ+ λθ
1λ

θ
2

)
. (10)

We find the demand impulse response

pt+1 = r1(ϕ)
t + r2, p0 = 1, (11)

and the impulse response for n-step ahead damped trend forecast

pt(n) = r1(ϕ)
t+n + r2, (12)

where

r1 =
(ϕ− λθ

1)(ϕ− λθ
2)

(ϕ− 1)
, r2 =

(1− λθ
1)(1− λθ

2)

(1− ϕ)
. (13)
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The OUT policy

The order decision is made at the end of period t, ot , with a lead time k
and a review period. That order is realised and influences the inventory at
time t + k + 1,

it+k+1 = it+k + ot − dt+k+1. (14)

Gaalman and Disney (2009) introduced the inventory gain component for
the OUT policy,

E (0) = 1; E (k) =
k∑

j=0

pj = 1 +
k−1∑
j=0

M(Dj)G. (15)

This helps us to write the inventory forecast

ît+k+1,t+1 = ît+k,t + ot − d̂t+k+1,t − E (k)ηt+1. (16)
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The proportional OUT policy (POUT)

The order generated by the POUT policy is

ot =

(
−f 0
0 1

)(
ît+k,t

d̂t+k+1,t

)
. (17)

f is the proportional feedback controller. 0 ≤ f < 2 is required for stability.
When f = 1, the POUT policy (17) degenerates into the OUT policy.
Then the forecast state space system for inventory and demand can be
written as(

ît+k+1,t+1

d̂t+k+2,t+1

)
=

(
(1− f ) 0

0 D

)(
ît+k,t

d̂t+k+1,t

)
+

(
−E (k)
DkG

)
ηt+1. (18)
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The OUT and POUT policy definition via difference
equations

To avoid any doubt, the state space model for the POUT policy we have so far
described is equivalent to

ot = d̂t+k+1,t + f

(
i⋆ − it +

k∑
j=1

(d̂t+j,t − ot−j)

)
. (19)

where:

d̂t+k+1,t is the forecasted demand in the period after the lead time

i⋆ is a safety stock that can be set to achieve a target level of availability to
minimise inventory holding and backlog costs via the newsvendor critical fractile.

i is the current inventory level governed by the following balance equation

it = it−1 + ot−k−1 − dt (20)∑k
j=1 d̂t+j,t is the target WIP, the sum of the forecasted demand over the lead time.∑k
j=1 ot−j the actual WIP, the open orders that have been placed, but yet received.

f is the proportional feedback controller, 0 ≤ f < 2.
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Inventory variance

Matrix algebra will reveal the POUT policy’s inventory variance is given by

V[it+k+1] =

(
1

f (2− f )

)
(E (k))2V[η] +

k−1∑
j=0

(E (j))2V[η], (21)

where E (k) is the accumulated demand impulse pt until t = k .

E (0) = 1; E (k) =
k∑

t=0

pt (22)

When f = 1, the POUT inventory variance expression degenerates into the
OUT inventory variance expression.

V[it+k+1] =
k∑

j=0

(E (j))2V[η]. (23)

Remark. For both the OUT and POUT policies, the inventory variance is
finite.
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Demand and order variances

Demand variance in period t + k + 1 is

V[dt+k+1] = V[d̂t+k+1,t ] +
k∑

j=0

p2j V[η]. (24)

Order variance in the POUT policy becomes

V[ot ] =V[d̂t+k+1,t ] + 2
2∑

j=1

(
f

1− (1− f )λϕ
l

)
rj(λ

ϕ
j )

kE (k)V[η]

+

(
f

2− f

)
(E (k))2V[η].

(25)

For f = 1, we have the order variance in the OUT policy,

V[ot ] =V[d̂t+k+1,t ] + 2
2∑

j=1

rj(λ
ϕ
j )

kE (k)V[η]. (26)

Remark. As V[d̂t+k+1,t ] =∞, both V[dt+k+1] and V[ot ] are infinite.
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Under i.i.d. demand

V[o] = V[η] f
2−f is increasing convex in f with a minimum of zero at f = 0

and an asymptote to infinity as f → 2. When f = 1, V[o] = V[η]

V[i ] = V[η]
(
1 + k + (1−f )2

f (2−f )

)
is always greater than V[η], always increases

in the lead time k , convex in f with a minimum of 1 + k at f = 1, and has
an asymptote to infinity when f ← 0 and f → 2.
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Impact of the proportional feedback controller under
AR(1) demand

Hosoda and Disney (2006) show that the variance of the orders and inventory
maintained by the POUT policy under AR(1) demand is given by

V[o]
V[η]

=
2f (ϕ+ 1)(f + ϕ− 1)ϕk+1 − 2(f + ϕ− 1)2ϕ2k+2 − f (ϕ+ 1)((f − 1)ϕ+ 1)

(f − 2)(ϕ− 1)2(ϕ+ 1)((f − 1)ϕ+ 1)
(27)

and

V[i ]
V[η]

=
(f − 1)2

(
ϕk+1 − 1

)2
(2− f )f (ϕ− 1)2

+
ϕ
(
1− ϕk+1

) (
ϕk+2 − ϕ− 2

)
+ (k + 1)

(
1− ϕ2

)
(1− ϕ)2 (1− ϕ2)

. (28)
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The critical bullwhip measure, CB(k)

As the demand and order variance for ARIMA(1,1,2) is infinite, we
measure bullwhip as the difference between the order variance and the
demand variance,

CB(k) = V[ot ]− V[dt+k+1]. (29)

To compare the bullwhip between DT-OUT and DT-POUT policies, we
can measure CB(k)O − CB(k)P = V[ot ]O − V[ot ]P ,

CB(k)O − CB(k)P = 2(1− f )E (k)

(
E (k)

2− f
+

r1(1− ϕ)(ϕ)k

1− (1− f )ϕ

)
V[η]. (30)

Remark. When ϕ < 0, an odd-even lead time effect can be seen in (30).
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When the bullwhip effect is increasing in the lead time

Theorem (Necessary-sufficient condition for an increasing bullwhip
effect in the lead time, Gaalman et al. (2022))

CB[k] is always positive and increasing in the lead time ∀k iff {d̃1, d̃2, ..., d̃k+1} > 0.

Proof. CB[k] is positive and increasing in k if CB[0] > 0 and ∀k,
CB[k]− CB[k − 1] > 0. Note always, d̃0 = 1. CB[0] =

(∑1
j=0 d̃j

)2 −∑1
t=0 d̃

2
t = 2d̃0d̃1

is positive if additionally d̃1 > 0. CB[1]− CB[0] = 2(d̃0 + d̃1)d̃2 is positive if additionally
d̃2 > 0. CB[2]− CB[1] = 2(d̃0 + d̃1 + d̃2)d̃3 is positive if additionally d̃3 > 0. This
process can be continued ∀k, indicating that bullwhip is always present and increasing in
the lead-time iff the demand impulse response is positive for all t. □

This theorem shows that bullwhip is always present and always increasing in the
lead-time if, and only if, the demand impulse response is positive for all t; that is, CB[k]
is increasing in k iff ∀t, d̃t > 0.
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For Type A ARIMA(1,1,2) demand

ϕ = 0.9, θ1 = −1.7, θ2 = −0.72, λϕ
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For Type B ARIMA(1,1,2) demand

(ϕ = 0.3, θ1 = −0.4, θ2 = 0.32, λϕ
1 = 0.3, λϕ

2 = 1, λθ
1 = −0.8, λθ
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Got an afternoon of meetings now... back later. Steve
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For Type F ARIMA(1,1,2) demand
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Concluding remarks

We have studied the bullwhip effect in both OUT and POUT policies
with optimal forecasts for ARIMA(1,1,2) demand.

We quantified the bullwhip effect for all possible ARIMA(1,1,2)
demand under the OUT and POUT policy.

Our analysis shows that conventional values for proportional
controller can sometimes (for Type A and Type F ARIMA(1,1,2)
demand) create a larger bullwhip than the DT-OUT policy.

For Type B, all values of 0 < f < 1 can reduce the bullwhip effect in
the DT-POUT policy.

Based on the eigenvalues of the demand process, we provide the
conditions where the DT-OUT policy has better bullwhip performance
than the DT-POUT policy.
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Thank you for your attention

Dynamic analysis of the damped trend proportional
order-up-to policy

Qinyun Li, Gerard Gaalman, and Stephen Disney
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