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Dynamical systems and difference equations ♠
Linear discrete-time systems are governed by linear difference
equations. For example, consider the following difference equation of
auto-regressive demand of the first order,

dt = ϕ(dt−1 − µd) + µd + ϵt (1)

Here, dt is the demand at time t, µd is the mean demand, −1 < ϕ < 1
is the auto-regressive parameter, and ϵt is an i.i.d. random variable.

System analysis involves understanding how the system behaves over
time for a given input function.

In the time domain this requires convolution. Discrete convolution,

ft ∗ gt
def=

∞
∑

τ=−∞
fτgt−τ , (2)

is a rather complex operation. Here, ∗ is the convolution operator.
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Avoiding convolution in the time domain with z-transforms

z-transforms allow us to avoid convolution in the time domain by
translating the problem into the frequency domain where solutions
can be obtained with only addition and multiplication.

The z-transform is defined by,

X [z] = Z[xt] =
∞
∑
t=0

xtz
−t . (3)

z-transforms are the discrete-time analogue of the Laplace transform.
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The z-transform family tree

Z-transforms were developed independently during the WWII for military needs:

In the UK for gun target systems (by Arnold Tustin), Bissell (1992a),

In the US (John Ragazzini and Lotfi Zadeh) for radar,

In Russia (Yakov Tsypkin), Bissell (1992b).

The z-name originated from the US team, Wikipedia (2018).

Professor Denis Towill was a student and colleague of Professor Arnold Tustin.

I was a MSc & PhD student, a colleague, and a friend of Professor Denis Towill.
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Understanding the z-transform: Impulse response

Linearity implies the system output yt , for any input function xt , is fully described
by the impulse response function gt . gt is the solution of the system’s difference
equation when the input is the unit impulse function δ[t]; δ[t = 0] = 1 and
δ[t ≠ 0] = 0.

Time, t xt = δ[t] yt = gt
0 1 1
1 0 0
2 0 0
3 0 0
⋮ 0 0

G [z] =
∞

∑
t=0

gtz
−t

=(1 × z0) + (0 × z−1) + (0 × z−2) + (0 × z−3) + ...
=1
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Understanding the z-transform: Delay operator

The output of the system can be time shifted one period into the future
with the delay operator, z−1.

Time, t xt = δ[t] yt = gt
0 1 0
1 0 1
2 0 0
3 0 0
⋮ 0 0

G [z] =
∞
∑
t=0

gtz
−t

=(0 × z0) + (1 × z−1) + (0 × z−2) + (0 × z−3) + ...
=z−1
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Understanding the z-transform: Scaled responses

We can scale an output with simple multiplication. Here we have
combined a scaling operation (multiplying by 0.5) with a delay, z−1.

Time, t xt = δ[t] yt = gt
0 1 0
1 0 0.5
2 0 0
3 0 0
⋮ 0 0

G [z] =
∞
∑
t=0

gtz
−t

=(0 × z0) + (0.5 × z−1) + (0 × z−2) + (0 × z−3) + ...
=0.5z−1
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Understanding the z-transform: Time integration

We can integrate the time domain response with the integration operator
z

z−1 . This is really useful for determining the inventory response.

Time, t xt = δ[t] yt = gt
0 1 1
1 0 1
2 0 1
3 0 1
⋮ 0 1

G [z] =
∞
∑
t=0

gtz
−t

=(1 × z0) + (1 × z−1) + (1 × z−2) + (1 × z−3) + ...

=
∞
∑
i=0

z−i = z

z − 1
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The superposition principle

All demand processes can be made up in delayed and scaled impulses.

Due to the superposition principle, the output of a linear system to
scaled and delayed impulses is the sum of scaled and delayed impulse
responses.

If you understand the unit impulse response then you understand how
the (linear) system will react to any demand.

Consider this example...

Time t d̃t f̃t dt ft 0.5f̃t 2f̃t−1 0.5f̃t + 2f̃t−1 ft − (0.5f̃t + 2f̃t−1)
-1 0 0 0 0 0 0 0 0
0 1 0.5 0.5 0.25 0.25 0 0.25 0
1 0 0.25 2 1.125 0.125 1 1.125 0
2 0 0.125 0 0.5625 0.0625 0.5 0.5625 0
3 0 0.0625 0 0.28125 0.03125 0.25 0.28125 0
4 0 0.03125 0 0.140625 0.015625 0.125 0.140625 0
5 0 0.015625 0 0.070313 0.007813 0.0625 0.070313 0
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The time and the frequency domain

Time domain Frequency domain

Difference equations Transfer functions

Frequency responseTime responses

Block diagrams

Fourier analysis

Convolution

Bode plot
Phase plot
H-infinity control

Complex frequency
z=exp(i w)

Poles and zeros
IVF and FVT 
Stability 
Aperiodicity

Simulation

Impulse response
Unit step

Ramp
Random demand
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Block diagrams: A visualisation and manipulation tool ♠
Method 1: The rules of block
diagram manipulation.

Addition and subtraction

Multiplication, division, and delay

Feedback loops

+
+

B(z)

F(z)
( )
( ) ( )1

F z

F z B z-

+ _

B(z)

F(z)
( )
( ) ( )1

F z

F z B z+

B(z)

+
+

A(z)

B(z)

+
-A(z)

B(z)

A(z) A(z)B(z)

A(z)+B(z)

A(z)-B(z)

Method 2: Follow the paths.
(Sum of all paths from ϵ to state
variable of interest)/(1-sum of all
paths from state variable, back to
itself).

Example: Orders, O(z)
ϵ(z) =

ad+bd
1+e+bc .
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Going back to the time domain: Inverse z-transform ♠

Inverse z-transform by direct inversion

The inverse z-transform is given by

ft =
1

2πi

˛
c
F (z)zn−1dz . (4)

This requires the use of Residue Theory and Complex Analysis.

Other approaches:

Long division

Partial fraction expansion and matching to standard forms in tables of
transform pairs

Software such as Mathematica and Matlab

www.wolframalpha.com
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Table of z-transform pairs, Disney and Lambrecht (2008)
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Software tools
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Test responses: Impulse, step, ramp, parabolic responses

The step response is the integral of the impulse response.

The ramp response is the integral of the step response.

The parabolic response is the integral of the ramp response.

These standard test inputs are frequently used by control engineers to
qualitatively understand the the nature of the dynamic response of a
system.
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Initial value theorem (IVT) and final value theorem (FVT)

The IVT and FVT is a useful cross-check of a behaviour of a dynamic
system as it provides information on the initial conditions (IVT) and the
long run, steady state, behaviour (FVT).

Initial value theorem

The initial value is the value of ft at t = 0. It is given by

lim
z→∞

F (z) = f0 (5)

Final value theorem

The final value is the value of ft at t =∞. It is given by

lim
z→1
(z − 1)F (z) = f∞ (6)

In situations which seem to be indeterminate, l’Hôpital’s rule can be used
to take the limit.
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l’Hôpital’s rule: a useful tool when taking limits ♠

l’Hôpital’s rule allows one to evaluate the limits of
indeterminate equations using derivatives.

l’Hôpital’s rule

The limit of an indeterminate function is equal to the
limit of its derivatives,

lim
z→c

F (z)
G(z)

= lim
z→c

F ′(z)
G ′(z)

. (7)

If necessary, l’Hôpital’s rule can be applied
repetitively until an expression is obtained that can
be easily evaluated by substitution.

Although the rule is often attributed to l’Hôpital,
the theorem was first introduced to him in 1694 by
the Swiss mathematician Johann Bernoulli.

Guillaume de l’Hôpital
1661 – 2 February 1704
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Poles and zeros (eigenvalues) of the transfer function ♠
The roots of the numerator of the transfer function are known as the
zeros.

The roots of the denominator of the transfer function are known as
the poles.

Collectively the poles and zeros are known as the eigenvalues.

The poles and zeros can be real or complex.

The position of the poles and zeros of a system in the complex plane
are enough to completely explain the system’s dynamic behaviour.

1

-1 1

-1

1

-1 1

-1
Zero
Pole

Key

A) Real poles B) Complex poles

Im

Re

Im

Re
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Poles and zeros completely determine the dynamic
behaviour: The case of simple exponential smoothing
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Stability: definition

A stable system will react to a finite input and
return to steady state conditions in a finite time.

An unstable system will either diverge
exponentially to positive or negative infinity or
oscillate with ever increasing amplitude.

A critically stable system will fall into a limit cycle
of constant amplitude to any finite input.

A system is stable if its poles and zeros lie inside
the unit circle in the complex plane, Jury (1974).

The first order case is simple. Difficulty appears
when there are complex poles and/or zeros. These
can arise with higher order transfer functions.

Oscillations in the order rates in supply chain are
costly. We must ensure supply chain replenishment
rules are stable.

Eliahu Ibrahim Jury
May 23, 1923 – Sept 20, 2020
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Jury’s stability criterion (1 of 2)

For transfer functions of order n in standard form, F (z) = B(z)
A(z)

, where

B(z) = bnzn + bn−1zn−1 + ... + b1z + b0 (8)

A(z) = anzn + an−1zn−1 + ... + a1z + a0; an > 0. (9)

Jury (1974) provides the following necessary and sufficient conditions for stability:

Jury’s stability criterion

As system is stable if A(1) = A(z)∣z→1 > 0, (−1)nA(−1) > 1 where
(A(−1) = A(z)∣z→−1), and the ∆±n−1 = Xn−1 ±Yn−1 matrices are positive
innerwise, where

Xn−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an an−1 an−2 . . . a2
0 an an−1 . . . a3
0 0 an . . . a4
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Yn−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a0
0 0 . . . a0 ⋮
⋮ 0 a0 . . . an−4
0 a0 a1 . . . an−3
a0 a1 a2 . . . an−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A matrix is positive innerwise if its determinant is positive and all the
determinants of its Inners are also positive.
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Stability of APIOBPCS, a generalised OUT policy (1 of 3)

The Automatic Pipeline, Inventory and Order Based Production Control System
has two proportional feedback controllers, John et al. (1994). One feedback
controller regulates the discrepancy between target and actual inventory, the
other regulates the discrepancy between target and actual WIP, Disney (2008).

+
-+

-

e,�white noise

Demand

Orders
z-(T +1)

i*, safety
stock 

Receipts
d a

+
-

WIP
T��m, forecast of demand 
over the lead time

c

z-1
1-z-T

+ +

m, mean 
demand

m, forecast of demand 
Tp+1 periods ahead

+
+

1
Ti

1
Ti

1
Tw

p

p

z
z-1
z

z-1
Inventory

b

e

+

p

The transfer function is given by

O(z) = B(z)
A(z)

= Twz
3

TiTwz3 +Ti(1 −Tw)z2 +Tw −Ti
. (10)
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Stability of APIOBPCS via Jury’s criterion (2 of 3)

A(1) > 0 is satisfied if Tw > 0.
(−1)nA(−1) > 0 is satisfied if Ti > 1

2
.

∆±
n−1 is positive innerwise if its determinants and the determinants of its Inners

are positive. The ∆±
n−1 matrices are;

∆+
n−1 = [

a3 a2 + a0
a0 a1 + a3 ] = [

TiTw Tw(1 −Ti)
Tw −Ti TiTw

] (11)

∆−
n−1 = [

a3 a2 − a0
−a0 a3 − a1 ] = [

TiTw 2Ti −Tw(1 +Ti)
Ti −Tw TiTw

] (12)

We can see that both ∆±
n−1 are 2x2, thus for our stability analysis here we only

need to test whether the determinants of ∆±
n−1 are positive as there are no inners.

The determinants are;

∣∆+
n−1∣ = Tw(Ti(1 +Ti(Tw − 1) +Tw) −Tw) (13)

∣∆−
n−1∣ = TiTw(3 +Ti) − 2T 2

i + (Ti(Ti − 1) − 1)T 2
w . (14)

The roots of (13) are completely dominated by the roots of (14). Thus

Ti ∣c =
T 2

w − 3Tw ±Tw

√
1 − 2Tw + 5T 2

w

2(Tw − 2 +T 2
w).

(15)

completes the critical stability boundary.
Stephen Disney Discrete control for inventory management ISIR July 24-28, 2023 24 / 57



Stability of the APIOBPCS (3 of 3), Disney (2008) ♠

In the left hand panel we have also scaled the axis by the reciprocal of Ti and Tw .
Care has to be taken when interpreting the x-axis; as 1/Tw → 0+, Tw → +∞ and as
1/Tw → 0−, Tw → −∞. The system is unstable if −2 < Tw < 0.
Rule of thumb: the system is always stable if Tw > 1 and Ti > 1+

√
5

2
= Φ.

The simulation of the systems impulse response in the right hand panel verifies our
stability results. Plot V and W confirms stable solutions exist when
−0.5 < 1/Tw < 0.
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Aperiodicity ♠
An aperiodic response is a term used to describe a system response
with only a finite number (less than n, the order of the system) of
maxima or minima in its time domain response.

Aperiodic systems will not create rogue seasonality and other system
induced cycles.

Aperiodicity occurs when all the roots of the characteristic equation
are distinct and lie on the real axis in the interval [0,1) in the z-plane

Aperiodicity in the APIOBPCS model

When Ti = Tw the transfer function of the production orders becomes

O(z) = z

Tiz + 1 −Ti
(16)

This system has a single real root at z = (Ti − 1)/Ti .

The APIOBPCS is aperiodic when Tw = Ti and Ti = [0,∞).
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The Fourier transform

Any time series can be decomposed into a set of
harmonic frequencies.

These harmonic frequencies are sets of sinusoidal
waves with different amplitudes and different phase
shifts (translations in time).

By adding together all of the harmonic frequencies,
the original demand signal can be reconstructed.

The Fourier Transform can be used to identify
these harmonic frequencies.

In our discrete time setting, we can use the
discrete time Fourier transform (DTFT),
Dejonckheere et al. (2003).

Jean-Baptiste Joseph Fourier
March 21, 1768 - May 5, 1830
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The DTFT and the Fast Fourier Transform (FFT)

The sequence of N numbers, x0, x1, x2, ..., xN−1, is transformed into a
sequence of N complex numbers, X0,X1,X2, ...,XN−1, via the
following formula

Xk =
N−1
∑
t=0

xtexp(−i2πkt/N) (17)

An efficient algorithm, available in Excel, for computing the DTFT is
known as the Fast Fourier Transform (FFT).

The FFT takes as an input N demands (where N is a power of 2) and
produces an output of N + 1 complex numbers.

These complex numbers are associated with sinusoidal waves of a
certain frequency and the real and imaginary parts of these complex
numbers define the amplitude and phase shift of each sinusoid.

Summing these scaled and time shifted sinusoids together
reconstructs the original demand signal.
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Reconstructing the signal from the Fourier coefficients

Define ak to be the real part of the complex Fourier coefficient Xk ; bk
to be the negative of the imaginary part of Xk .

We may reconstruct the original signal (the demand series) by using
the following expressions for each of the harmonic frequencies, hk

hk,t = A sin (F + P) (18)

with amplitude, A =
√

a2k + b
2
k/N, frequency F = 2πkt/N and phase

P = atan2(bk , ak).
Summing together all of the harmonic frequencies with

xt =
N−1
∑
k=0

hk,t (19)

reproduces the original signal.
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Fourier analysis example (1 of 3)

Consider the following time series of demand

Time, t Demand, xt
0 0
1 2
2 4
3 3
4 4

Using (17) we obtain the following five Fourier coefficients, from which we identify the
constants ak and bk as shown below.

k Fourier coefficients, Xk ak = Re[Xk] bk = −Im[Xk]
0 13 13 0
1 −3.80902 + 1.31433i -3.80902 -1.31433
2 −2.69098 + 2.12663i -2.69098 -2.12663
3 −2.69098 − 2.12663i -2.69098 2.12663
4 −3.80902 − 1.31433i -3.80902 1.31433
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Fourier analysis example (2 of 3)

For each of the harmonic frequencies, we calculate the amplitude and phase shift
using (18) to determine the contribution of each harmonic to the demand in each
time period.

Amplitude, A = Phase, P = Harmonics hk,t = A sin (2πkt/N + P)
k 1

N

√
a2
k
+ b2

k
atan2(bk , ak) t = 0 t = 1 t = 2 t = 3 t = 4

0 2.6 1.5707 2.6 2.6 2.6 2.6 2.6
1 0.8058 -1.903 -0.7618 -0.4854 0.4618 0.7708 0.0145
2 0.6859 -2.239 -0.5381 0.1854 0.2382 -0.5708 0.6854
3 0.6859 -0.9020 -0.5381 0.1854 0.2382 -0.5708 0.6854

N = 4 0.8058 -1.2385 -0.7618 -0.4854 0.4618 0.7708 0.0145
Sum 0 2 4 3 4

Finally, in each time period, we sum the harmonics to obtain the original demand
signal.
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Fourier analysis example (3 of 3)
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h0 provides the mean (average) level.
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Fourier analysis example (3 of 3)
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h1 is a low frequency sin wave which we add to the mean.
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Fourier analysis example (3 of 3)
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h2 is a higher frequency sin wave which we add to the sum of h0 and h1.
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Fourier analysis example, (3 of 3)
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We can ignore the non-integer values of the harmonics.
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Fourier analysis example (3 of 3)

0 1 2 3 4

4

3

2

1

0

Demand

0h

0 1h h+

0 1 2h h h+ +

0 1 2 3h h h h+ + +

0 1 2 3 4h h h h h+ + + +

Key

Time

D
e
m
a
n
d

The sum of the harmonics reconstructs the demand.
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From Fourier transforms to the frequency response

Any time series can be decomposed into a sum of sinusoidal
harmonic frequencies.

In a linear system, if we can understand how a system reacts to each
of the individual harmonic frequencies in the demand process, then we
can predict how the system will react to the original time series.

The way to understand how a system reacts to the harmonics is via
the frequency response plot.

This can be readily obtained from the z-transform transfer function,
X (z), of the system:

∣AR ∣2 = ∣X (exp(ωi))∣2 = X (exp(iω))X (exp(−iω)). (20)

Here ∣AR ∣ is the amplitude ratio and ω is the angular frequency
measured in radians per time period.

The amplitude ratio describes how the individual harmonic
frequencies are amplified.
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Understanding the frequency response (Bode) plot

Frequency, is plotted for
ω ∈ [0, π] due to the
Nyquist’s theorem.

Blue line is the system
input, a sin wave with unit
amplitude and frequency ω.

Red line is the system
output, a sin wave with an
amplitude ratio AR and
frequency ω.

In this system, the
amplitude of every harmonic
frequency is amplified.

What do you think are the
consequences of this?
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Making predictions from the frequency response ♠
The figures below illustrate the frequency response for the order-up-to
(OUT) policy with three different forecasting methods: Näıve, Simple
Exponential Smoothing (SES), and Holt’s method.

The frequency response plots show that for every possible demand pattern
(stationary or non-stationary) the OUT policy will always create bullwhip,
for all (constant) lead times, Dejonckheere et al. (2003), Li et al. (2014).
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Random demand (a.k.a. linear quadratic control)

Suppose we have a random demand. In a supply chain, we would
often be interested in how the variance of the input (demand) is
amplified by the system.

Time
0 50 100 150 200

0

0.020.04

Probability

Q
u
a
n
tit
y

Orders Demand

Q
u
a
n
tity

In the supply chain management field we call this the bullwhip
problem, or maybe even the Forrester effect.

In control engineering, the problem is known as linear quadratic
control, or if the noise is Gaussian, linear Gaussian control.
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Calculating white noise variance ratios

When the input (demand) into a system is an independently and
identically distributed (i.i.d.) random variable, control engineers call
this a white noise input.
White noise has an AR of unity for all frequencies. The standard
white noise input has a mean of zero and unit variance.
There are many ways to calculate the (long run) variance of a
system’s output, given a white noise input:

V[Output]
V[Input]

= 1

π

ˆ π

0
∣F [exp(iω)]∣2dω (Parseval’s Relation)

= 1

2πi ∲
F [z]F [−z]z−1dz (Cauchy’s Contour Integral)

=
∞
∑
t=0

f̃ 2t (Tsypkin’s Relation)

= ∣Xn+1 +Yn+1∣b
an∣Xn+1 +Yn+1∣

(Jury’s Inners)
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Yakov Tsypkin: Discrete Laplace transform

Yakov Zalmanovitch Tsypkin

“He is considered to be the father of pulsed
systems in the East. In a series of papers in
1949 and 1950, he extensively developed the
discrete Laplace transform (z-transform and
modified z-transform) which he applied to
the study of pulsed systems. This work
culminated in his classic book in this field in
1958.” (Bissell, 1992b).

Yakov Zalmanovitch Tsypkin
Sept 19, 1919 - Dec 2, 1997
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Tsypkin’s sum of the squared impluse response

Tsypkin’s relationship. Patterned on Tsypkin (1964, pp183-192) and
Boute et al. (2022)

If the input xt to a linear system with impulse response function g̃t is an
i.i.d. random process with the variance V[xt], then the variance of output is,

V[yt] = V[xt]
∞

∑
t=0

(g̃t)2. (21)

Proof. Denote limt→∞ E[xt ] = x̄ and limt→∞ E[yt ] = ȳ . Taking expectations and limits yields ȳ = x̄∑∞t=0 g̃t . Indeed, linearity
means that a centered input xt − x̄ yields asymptotically centered output yt − ȳ . Similarly:

V[yt ] = lim
t→∞

E[(yt − ȳ)2] (by definition of a variance)

= lim
t→∞

E[(
t

∑
i=0

(xi − x̄)g̃t−i)
2

] (using convolution)

= lim
t→∞

E[(
t

∑
i=0

(xi − x̄)g̃t−i)(
t

∑
j=0

(xj − x̄)g̃t−j)] (expand the square)

= lim
t→∞

t

∑
i=0

t

∑
j=0

E[(xi − x̄)(xj − x̄)]g̃t−i g̃t−j (expected value of a sum is the sum of its expected addends)

= V[xt ]
∞

∑
i=0

x̃
2
i . (E[(xi − x̄)(xj − x̄)] = 0 if i ≠ j for i.i.d. input xt )
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Obtaining the variance ratio: Example of AR(1) demand ♠
The z-transform block diagram of the AR(1) demand process is given by

e[z],�white noise

f�z

+
+

-1

+
+ D[z]/e[z], Demand

Mean demand, md

Manipulating the block diagram yields the system’s transfer function,

D[z]
ϵ[z] =

1

1 − z−1ϕ =
z

z − ϕ. (22)

Taking the inverse z-transform of (22) yields the time domain impulse response,

d̃t = Z−1 [
z

z − ϕ] = ϕ
t . (23)

From Tsypkin’s relationship, summing the squared impulse response over all
non-negative t, produces an expression for the variance of the AR(1) demand:

V[dt] = V[ϵt]
∞
∑
t=0
(d̃t)2 = V[ϵt]

∞
∑
t=0
(ϕt)2 = V[ϵt]

1

1 − ϕ2
. (24)
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Bullwhip ratio and CB[Tp], the difference between the
order and demand variances, Gaalman et al. (2022)

Bullwhip exists when the ratio σ2
o/σ2

d > 1. This is equivalent to the difference
between the order and demand variance being positive: That is, bullwhip exists if
the critical bullwhip function CB[Tp] = σ2

o − σ2
d > 1.

Using Tsypkin’s relation, the demand variance is

σ2
d = σ2

ϵ

∞
∑
t=0

d̃2
t = σ2

ϵ(
Tp+1

∑
j=0

d̃2
j +

∞
∑

t=Tp+2
d̃2
t ) (25)

In the order-up-to policy, with MMSE forecasting, the order variance is

σ2
o = σ2

ϵ((
Tp+1

∑
j=0

d̃j)
2

+
∞
∑

t=Tp+2
d̃2
t ). (26)

Using these variances, CB[Tp] becomes

CB[Tp] =
σ2
o − σ2

d

σ2
ϵ
= (

Tp+1

∑
j=0

d̃j)
2

−
Tp+1

∑
t=0

d̃2
t . (27)

Bullwhip existence is determined solely by the first Tp + 1 demands.
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When bullwhip is an increasing function of the lead time

Gaalman et al. (2022) show when the order-up-to policy produces a positive
impulse response then the bullwhip effect increases in the lead time.

Theorem 4. Bullwhip lead time behaviour

Iff {d̃1, d̃2, ..., d̃Tp+1} > 0 then CB[Tp] is positive and increasing in the lead time.

Proof CB[Tp] is positive and increasing in Tp if CB[0] > 0 and ∀Tp > 0,
CB[Tp] − CB[Tp − 1] > 0

Note always, d̃0 = 1.

CB[0] = (∑1
j=0 d̃j)

2 −∑1
t=0 d̃

2
t = 2d̃0d̃1 is positive if additionally d̃1 > 0

CB[1] − CB[0] = 2(d̃0 + d̃1)d̃2 is positive if additionally d̃2 > 0

CB[2] − CB[1] = 2(d̃0 + d̃1 + d̃2)d̃3 is positive if additionally d̃3 > 0

This process can be continued for all Tp. ◻

Bullwhip is always increasing in the lead-time iff the demand impulse response is
positive for all t.
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Exponential smoothing provides the MMSE forecast in
Integrated Moving Average, IMA(0,1,1), demand

IMA(0,1,1) demand, Box et al. (1994), is defined as

d0 = µ + ϵ0 (28)

dt = dt−1 − (1 −α)ϵt−1 + ϵt (29)

IMA(0,1,1) demand evolves as follows

d0 = µ + ϵ0 (30)

d1 = µ + ϵ0 − (1 −α)ϵ0 + ϵ1 = αϵ0 + ϵ1 + µ (31)

d2 = αϵ0 + ϵ1 + µ − (1 −α)ϵ1 + ϵ2 = α(ϵ0 + ϵ1) + ϵ2 + µ (32)

By induction, the following recursion occurs

dt = α
⎛
⎝
t−1

∑
i=0

ϵi
⎞
⎠
+ ϵt + µ (33)

Exponential smoothing forecasts are given by

d̂0 = µ (34)

dt = dt−1 − (1 −α)d̂t−1 (35)

Exponential smoothing forecasts of IMA(0,1,1) demand
evolves as follows

d̂0 = µ (36)

d̂1 = αd1 + (1 −α)d̂0 + µ = αϵ0 + µ (37)

d̂2 = αd2 + (1 −α)d̂1 + µ = α(ϵ0 + ϵ1) + µ (38)

By induction, the following recursion occurs

d̂t = α
⎛
⎝
t−1

∑
i=0

ϵi
⎞
⎠
+ µ (39)

Notice, the forecasts errors are ∀t equal to the noise ϵt , revealing that exponential
smoothing provides the MMSE forecast of IMA(0,1,1) demand,

dt − d̂t = α(
t−1
∑
i=0

ϵi) + ϵt + µ − α(
t−1
∑
i=0

ϵi) − µ = ϵt . (40)
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Bullwhip lead time behaviour of OUT policy under
IMA(0,1,1) demand with MMSE forecasts ♠

The z-transform of the IMA(0,1,1) demand is given by

D[z]
ϵ[z]

= 1 − (1 − α)z−1

1 − z−1
= α − 1 + z

z − 1
(41)

The inverse z-transform of (46) provides the time domain impulse
response

d̃t =
⎧⎪⎪⎨⎪⎪⎩

1 if t = 0,
α if t > 0.

(42)

As α ∈ [0,2) then ∀t, d̃t ≥ 0. As the demand impulse is always
positive we conclude, via Theorem 4, under IMA(0,1,1) demand, the
OUT policy with MMSE forecasts produces bullwhip that always
increases in the lead time.
Interestingly, we are able to draw this conclusion despite infinite
demand and order variances being present.
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Inventory variance maintained by the OUT policy under
IMA(0,1,1) demand with MMSE forecasts

The z-transform of the inventory levels is given by

i[z]
ϵ[z]

=
α(Tp(z − 1) + z) + z − 1

(z − 1)2
− zTp+1(α + z − 1)

(z − 1)2
(43)

The inverse z-transform of (46) provides the time domain impulse response

ĩt =
⎧⎪⎪⎨⎪⎪⎩

−1 − tα if t ≤ Tp,

0 if t > Tp.
(44)

Via Tyspkin’s relationship the inventory variance is given by

V[i]
V[ϵ]

=
Tp

∑
t=0

(1 + tα)2 = 1 +Tp + αTp(Tp + 1) +
α2Tp(Tp + 1)(2Tp + 1)

6
(45)

Despite that infinite demand and order variances are present, the variance of
the inventory levels is finite (and its derivation is super cool).
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=
Tp
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(1 + tα)2 = 1 +Tp + αTp(Tp + 1) +
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6

(48)

Despite that infinite demand and order variances are present, the variance of the inventory
levels is finite (and its derivation is super cool).
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Telescoping, triangular numbers, and the sum of the first
Tp squared numbers

Recall

V[i]
V[ϵ] =

Tp

∑
t=0
(1 + tα)2 = (1 + 0α)2 + (1 + 1α)2 + (1 + 2α)2 + ... + (1 +Tpα)2 (49)

Expand the squares

V[i]
V[ϵ] = (1 + 0α)(1 + 0α) + (1 + 1α)(1 + 1α) + ... + (1 +Tpα)(1 +Tpα)

= 1 + 2α(0) + α202 + 1 + 2α(1) + α212 + 1 + 2α(2) + α222 + ...
+ 1 + 2α(Tp) + α2T 2

p . (50)

Re-order the terms

V[i]
V[ϵ] = 1 +Tp + 2α

Tp

∑
i=0

i + α2
Tp

∑
i=0

i2 (51)

There are Tp + 1 red terms all equal to unity; the blue terms are the triangular
numbers, ∑Tp

i=0 i = Tp(Tp + 1)/2. The green terms are the sum of the first Tp

squared numbers ∑Tp

i=0 i
2 = α2Tp(Tp+1)(2Tp+1)

6
. These are both well-known relations.

Bringing these relations together provides (48).
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Simulating in Excel: Beware of Jenson’s inequality

Excel is a very useful tool for building a simulation model where you can
verify the internal logic of your system.

I always do my analysis using at least two different methods: Excel
simulation, maths by hand, Mathematica, R and/or R-shiny. This way I
can be sure I am not studying nonsense and wasting my time.
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Concluding remarks (from my PhD grandfather)
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Thank you for listening

Discrete control theory for inventory management: A tutorial

Stephen Disney
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The triangular numbers

We wish to show that

m

∑
i=0

i = 1 + 2 + 3 + ... +m = m(m + 1)
2

= S1. (52)

Proof. The following visualisation (when m = 3) is convincing.

m

m+1
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The sum of the first m square numbers: A proof

We wish to show that

m

∑
i=0

i2 = m(m + 1)(2m + 1)
6

= S2. (53)

For no apparent reason, consider

(n + 1)3 − n3 = n3 + 3n2 + 3n + 1 − n3 = 3n2 + 3n + 1 (54)

For different n we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = 1 23 − 13 = 3(1)2 + 3(1) + 1
n = 2 33 − 23 = 3(2)2 + 3(2) + 1
n = 3 43 − 33 = 3(3)2 + 3(3) + 1
⋮ ⋮

n = m − 1 m3 − (m − 1)3 = 3(m − 1)2 + 3(m − 1) + 1
n = m (m + 1)3 −m3 = 3(m)2 + 3(m) + 1

(55)

Summing the equations in (55) leaves (m + 1)3 − 13 = 3S2 + 3m(m + 1)/2 +m.
Simple algebra then leads to the required expression, (53).
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